23,093
回編集
(校正) |
(コラム|グラフの平行移動|) |
||
|}
{{コラム|グラフの平行移動|
2次関数にかぎらず、一般に関数 y=f(x) のグラフをy軸の正の方向に q だけ平行移動したグラフは、
:関数 y = f(x) +q
のグラフになる。
また、関数 y=f(x) のグラフをx軸の正の方向に p だけ平行移動したグラフは、
:関数 y = f(x-p)
のグラフになる。
よって、関数 y=f(x) のグラフをx軸の正の方向に p 、y軸の正の方向にq だけ平行移動したグラフは、
:関数 y = f(x-p) +p
のグラフになる。
}}
{{コラム|グラフの対称移動|
2次関数にかぎらず、一般に関数 y=f(x) のグラフをx軸に関して対称に移動したグラフは、
:関数 y = -f(x)
のグラフになる。
また、関数 y=f(x) のグラフをy軸に関して対称に移動したグラフは、
:関数 y = f(-x)
のグラフになる。
よって、関数 y=f(x) のグラフを原点に関して対称に移動したグラフは、
:関数 y = - f(-x)
のグラフになる。
}}
|
回編集