「利用者:ゆにこーど/サンドボックスD」の版間の差分

ページの白紙化
(ページの作成:「この章では、2年生の図形の学習の基礎を学びます。 == 直線と角 == === 2直線が交わってできる角 === right…」)
 
(ページの白紙化)
タグ: 白紙化
この章では、2年生の図形の学習の基礎を学びます。
 
== 直線と角 ==
=== 2直線が交わってできる角 ===
[[File:Vertical angles2.svg|right]]
直線が2つ交わると、その交点の周りに4つの角ができます。
 
このとき、右図の∠''a'' と∠''c'' のような向かい合わせの位置にある2つの角を'''対頂角'''(たいちょうかく、英:vertical angles)といいます。∠''b'' と∠''d'' も対頂角です。
 
たとえば∠''b'' が120°のとき、∠''a'' と∠''c'' の大きさを比べてみると、
:∠''a'' = 180°-120° = 60°
:∠''c'' = 180°-120° = 60°
つまり、∠''a'' = ∠''c'' となります。
これは、∠''b'' が何度であっても成り立ちます。なぜなら、∠''a'' も∠''c'' も、(180-∠''b'' )°になるからです。ですから、次のことが言えます。
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''対頂角の性質'''
|-
|style="padding:5px"|対頂角は等しい。
|}
 
=== 2直線に1つの直線が交わってできる角 ===
[[File:Corresponding angles2.svg||right]]
2直線を横切るようにもうひとつの直線が交わるとき、8つの角ができます(右図)。
 
このとき、∠''a'' と∠''e'' のように同じ位置にある2つの角を'''同位角'''(どういかく、英:corresponding angles)といいます。∠''a'' と∠''e'' はどちらも、左上の位置にあるため、同位角といえます。∠''b'' と∠''f'' は互いに同位角であり、∠''c'' と∠''g'' は互いに同位角であり、∠''d'' と∠''h'' もそれぞれ同位角です。
 
また、∠''b'' と∠''h'' のように、2直線の内側にある2つの角を'''錯角'''(さっかく、英:alternate interior angles)といいます。∠''c'' と∠''e'' も錯角です。
 
=== 平行線と同位角・錯角 ===
[[File:Corresponding angles with parallel line.svg|thumb|]]
右図のように2直線が平行(へいこう、英:parallel)であるとき、同位角どうしは等しくなります。また、同位角が等しいとき、2直線は平行になります。なぜそうなるのかを説明すると難しくなるので、ここでは省きます。
 
とにかく、右図のように直線l,m,nと角度a,bがある場合、
:[[File:Cursive l for mathematics.svg|12px|]]//m ならば ∠''a'' = ∠''b''
です。
 
{{-}}
[[File:Alternate angles with parallel line.svg|thumb|]]
錯角どうしも、2直線が平行なときには、錯覚どうしも等しくなります。錯覚は、同位角とは対頂角の位置にあることを利用すれば、同位角の性質をもちいて、2直線が平行なとき(同位角どうしだけでなく)錯覚どうしも等しくなることも説明できます。
 
{| style="border:2px solid skyblue;width:80%" cellspacing=0
|style="background:skyblue"|'''平行線と同位角・錯角'''
|-
|style="padding:5px"|1, 2直線が平行であるとき、その同位角は等しい。また、錯角も等しい。
|-
|style="padding:5px"|2, 同位角や錯角が等しいとき、その2直線は平行である。
|}
 
== 多角形の角 ==
=== 三角形の内角と外角 ===
中学校数学では、主に円、三角形、四角形について学習します。2年生では三角形と四角形を主に学習します。まずは、三角形から調べてみましょう。
 
三角形の3つの内角(図形の内側の角)の和はいくつになるでしょうか。ここでは、平行線と角の性質を用いて調べていきます。
 
[[File:Proof of internal angle sum = 180 degree type2.svg|300px|right]]
右図のΔABCに、辺BCの延長CDを引きます。
 
また、辺ABに平行で、Cを通る直線CEを引きます。
 
分かりやすいように、全ての角に右図のように名前をつけてみましょう。
このとき、平行線の同位角は等しいですから、
:∠''b'' = ∠''e''   … (1)
また、平行線の錯角は等しいですから、
:∠''a'' = ∠''d''   … (2)
∠''c'', ∠''d'', ∠''e'' は一直線上にあるので
:∠''c'' + ∠''d'' + ∠''e'' = 180°
ですから、これに(1),(2)を代入する事により、
:∠''a'' + ∠''b'' + ∠''c'' = 180°
 
{{中学校数学|三角形の3つの内角の和|三角形の3つの内角の和は180゚である。}}
 
 
<!--ここから先、説明の得意な人好きなように書き換えてください-->
[[File:External-angle.svg|right]]
;外角
外角とは、内角と隣り合った角のことで、右図の1のような角を指します。2のような角は指しません。<BR>
 
{{-}}
[[File:External-angle double.svg|thumb|]]
右図のように外角は1つの頂点につき大きさの等しい外角が2個あるが、普通はどちらか片方のことを言う。
 
{{-}}
[[File:Proof of internal angle sum = 180 degree type2.svg|300px|right]]
外角には、次のような性質があります。
 
ある1つの三角形の頂点をA,B,C、それらの頂点に対応する3つの内角を &ang;a, &ang;b, &ang;c とすると、
 
頂点Cの外角は、&ang;''a'' + &ang;''b'' です。
 
なぜなら、さきほどの内角の和の説明の図で、
:&ang;''d'' + &ang;''e'' = &ang;''a'' + &ang;''b''なので、
よって 頂点Cの外角は、&ang;''a'' + &ang;''b'' です。
 
{{中学校数学|三角形の外角|三角形の1つの外角は、それと隣り合わない2つの内角の和に等しい}}
 
 
== 多角形 ==
[[File:Interior and exterior angles of 5-gon japanese.svg|thumb|300px|]]
多角形の'''内角'''と'''外角'''の位置は、右図のとおり。
右図では例として五角形の場合をしめす。
 
 
{{-}}
[[File:Triangular division of 7-gon.svg|thumb|]]
n角形の内角の和は、 (nー2)×180 ° になる
 
なぜなら、n角形は、右図のように、(n-2) 個の三角形に分割できるからである。(なお、右図は七角形である。)
 
{{-}}
[[File:Concaved polygon.svg|thumb|]]
ただし中学のこれらの多角形の公式では、右図のような、へこんだ多角形については考えていない。
{{-}}
 
 
[[Category:中学校数学|2ねんせい すけい すけいのせいしつ]]
4,136

回編集