「高等学校化学I/物質と原子」の版間の差分

削除された内容 追加された内容
M編集の要約なし
高校の物理の範囲では、化学反応を説明できない。だから高校生は、物理とは別に、化学の理論も覚える必要がある。
196 行
 
電荷を持った粒子は基本的に次の性質を持っている。これらを知っていれば、高等学校の化学においては十分であろう。
:* 同じ符号の電荷を持った粒子同士は反発する力が働く。
:* 逆の符号の電荷を持った粒子同士は引き合う力が働く。
:* 電荷を持った粒子同士に働く力は、距離が近いほど大きくなる。
 
ある原子核に陽子が3つ含まれているとき、原子核全体の電荷は
205 行
: (+3e) + (-3e) = 0
となる。これは、原子全体では電荷を持っていないということである。このことがらを利用すれば、原子全体の電荷や、原子の名称などから、それにいくつの陽子や電子が含まれているかを計算することができる。
 
=== 高校の物理の範囲では、化学反応を説明できない ===
高校の物理で習う電気の内容だけでは、化学での電子のふるまいなどを理解することはできない。だから高校生は、物理とは別に、化学の理論も覚える必要がある。
 
たとえば、「なぜ、電子にはK殻、L殻などといった電子殻(でんしかく)があるのか?」などといった基本的な問いさえ、高校物理の電気・磁気の知識では説明不可能である。原子どうしの結合の起こる理由すら、高校物理では、説明不可能である。
:問いの答えを話すと、量子力学(りょうし りきがく)のシュレーディンガーの方程式や、ディラックの方程式によって、これら化学での電子の振る舞いについての問いの答えが、数学的に証明できた。
 
電子殻については、量子力学の以前でも、周期表が19世紀にメンデレーエフによって発見されたことや、さまざまな実験結果によって、電子殻のような、現象が存在することは、19世紀ころ(1800年~1900年ごろ)から分かっていた。だが、ではなぜ、そのような電子殻といった仕組みがあるのか、量子力学の以前は、まだ分からなかったのである。
 
量子力学の以前でも、電気分解などの実験によって、化学反応には電子が関わることは分かっていたし、周期表などから、原子のもつ電子の数も分かっていた。原子核に陽子や中性子のような物があることも、原子の電子軌道上にもつ電子と、原子の質量の分析から、分かっていた。しかし、ではなぜ、原子核のもつ陽子や中性子の数が、そのような数に決まるのか、まったくもって理由が不明だったのである。
 
シュレーディンガー方程式とディラック方程式の解法は、とても難解であり、高校レベルを遥かに越える難度で、理系の大学学部の高学年~大学院レベルである。しかも、数学や物理や化学を専門にする学科の大学生の場合で、大学高学年~大学院で、やっと、解けるというレベルである。
 
たいていの大学生の受ける大学の授業では、大学1年~2年での化学の授業で、学生が理解するよりも先に、シュレーディンガー方程式・ディラック方程式によって20世紀の化学者が分かった結果を習い、学生は結果を鵜呑みすることになる。
 
とても、一般の高校生には、シュレーディンガー方程式などによる化学反応の証明は手が追えないので、シュレーディンガー方程式およびディラック方程式に深入りしてはならない。
 
科学技術の歴史的にも、物理学において、現代のような、原子や電子にもとづく化学反応の仕組みが分かったのは、だいぶ後の時代であり、1900年すぎごろから、量子力学や相対性理論などの学問が発達してからである。1800年代までは、そもそも「原子」や「分子」といったものが存在するということの証明すら、とても難しかったのである。
 
また、1800年代ころの昔は、原子と分子との区別すら、まだ、あまり区別されてなくて、混同されていた時代だったのである。
 
 
つぎの章の以降で話す、原子の仕組みについても、同様に、高校物理の電気の知識では、説明できない。量子力学よりも前の昔は、化学での原子の仕組みが「なぜ、そうなるのか?」が分からなかったのである。
 
だから、高校生は、先に結果を覚える必要がある。
 
== 原子に関する諸概念 ==