静電誘導と誘電分極
編集コンデンサー
編集誘電体
編集まず、高校物理でいう「誘電体」(ゆうでんたい)とは、通常のセラミック、雲母(マイカ)、あるいは通常のプラスチックなどのように、電気を通さない物質である。セラミックやマイカのように、石のような性質をもつ物質が、誘電体である場合が多い。
つまり、金属は、誘電体ではない。金属は、誘電体ではなく、(金属は)導体である。
では、誘電体の物理について、説明する。
コンデンサーに誘電体を入れると、誘電体が誘電分極を起こすため、コンデンサのプラス極板で発生した電気力線のいくつかが打ち消される。
その結果、誘電体の入ったコンデンサーの極板間の電場は、極板の電荷密度で発生する電荷が真空中でつくる電場よりも弱くなる。
この結果、静電容量が変わる。
さて、真空中の静電容量の公式は、
であった。
誘電体のある場合の静電容量は、
となる。
ここで、 を誘電率(ゆうでんりつ)という。 を、真空中の誘電率という。
物質 | 比誘電率 |
---|---|
空気 (20℃) | 1.0005 |
パラフィン (20℃) | 2.2 |
ボール紙 (20℃) | 3.2 |
雲母 | 7.0 |
水 (20℃) | 約80 |
チタン酸バリウム | 約5000 |
ここで、比
を、比誘電率(ひ ゆうでんりつ)という。
つまり、 は比誘電率である。 いっぽう、 および は、比誘電率ではない。
比誘電率 をもちいれば、静電容量 C の式は、
と書ける。
コンデンサの静電エネルギー
編集U=2⁻¹CV²
=2⁻¹QV =(2C)⁻¹Q²
電流による磁界
編集磁石のまわりには物体を動かす力のあるものが生じている。 これを磁場(じば)と呼ぶ。磁界(じかい)ともいう。
電流が流れているときにも、そのまわりには、右ねじの法則(right-handed screw rule)に従う向きに磁界が生ずる。 電流I[A]が直線的に流れているとき、磁界の大きさは であることが知られている。
ここで、aは磁束密度を測る点と、電線の距離。
また、 は真空の透磁率(とうじりつ、permeability)を表し、値は [H/m] である。
電磁誘導と電磁波
編集電磁誘導
編集磁場を伴う物体が運動すると、そのまわりには電場が生ずることを電磁誘導(でんじゆうどう、electromagnetic induction)という。 仮に、ソレノイド(solenoid、コイルのこと)の近くでそれを行なったとすると、生じた電場によってソレノイドの中には電流が流れる。 生ずる電場の大きさは、 となる。(半径aの円形のコイルの場合。) Eの単位は[V/m]であり、Bの単位は[T]である。
電磁波
編集磁場の変化によって電場が生じる現象は、電磁誘導の節で説明した通りである。また、実験によって電場の変化が磁場を引き起こすことも知られており、これにより何もない空間中で電場と磁場が伝播することが予想される。
(:電磁波の伝播のスキマティックな図)
- ※ 市販の大学向け教科書を読んでも、ヘルツの実験に関する説明が不足しているため、高校での説明が求められる。
- ※ なお、高校の専門科目『物理』で学ぶ内容である。
物理実験家ヘルツは、放電実験を通じて受信機を回路中に設置し、送信側の放電によって電場が遠く離れた受信側の回路に伝わることを確認した。この実験では、ヘルツが受信回路の向きを変えながら実験を行ったことにより、送信機の向きに対する受信機の向きによって電場の伝わり方が異なることが分かった。このことから、電場には遠隔作用に偏光性があることが示唆される。
- (※ 範囲外)なお、方解石などの偏光作用は、既にこの時代に知られていたと考えられる。
電場のこの特性には偏光性があるため、波として扱うことは適切である。
ヘルツの実験から得られる知見としては、
- 電場は遠隔作用によって伝わること
- 放電は電場の遠隔作用を引き起こすこと
- この電場の遠隔作用には偏光作用があること
が実験的に確認された。
物理学の分野では、ヘルツの実験の以前から、理論物理学者マクスウェルによって、電磁波が電場と磁場の相互作用によって真空中を伝達することが予測されていた。そのため、ヘルツの実験はマクスウェルが予測した電磁波の証明と見なされている。現代においても、物理学者たちはそのように考えている。
また、マクスウェルが理論的に求めた電磁波の速度は、既に知られていた光速(おおよそ3×108 m/s)と精度良く一致していた。このことから、光が電磁波の一種であることが明らかとなる。
- (啓林館の教科書にある余談:)余談ではあるが、人類初の無線通信に成功したのはマルコーニであり、ヘルツではないため、誤解のないように留意されたい。
ヘルツの実験では、厳密には放電による電場の伝播が観測されたが、磁場もこの実験で伝播すると考えられ、実際に人類には支障は生じていないため、今でもヘルツの実験がマクスウェルの予測した電磁波の証明として伝えられている。
光には反射、屈折、回折、さらにはヤングのスリットによる回折などの現象が見られるが、ヘルツの放電実験でも同様の配置で金属板を配置し、電磁波の反射、屈折、回折が確認されている(※ 参考文献: 実教出版の専門『物理』の検定教科書)。これにより、光が電磁波の一種であることが示されている。
- (※ 範囲外:)また、電磁波の反射を利用して波長を測定することに、ヘルツは成功した[1]。電磁波を反射させることで、到来する波と干渉して定常波を形成するはずである。ヘルツの実験例では、受信機を送信機から離すと、33cmごとに顕著な反応が見られた。この実験では半波長が33cmであったと推測され、すなわち波長66cmの電磁波が実験で生成されたと思われる。
- ただし、ヘルツのような方法で測定できる波長は、人間が肉眼で確認でき、手で動かせる程度の波長に限られる。つまり、センチメートル単位や1メートル以上の波長である。一方、波長がナノメートル単位やマイクロメートル単位の場合は、回折格子などを用いて波長を測定することになる。詳しくは『高等学校物理/物理II/原子と原子核』のコラムを参照されたい。フラウンホーファーやラザフォードなどの物理学者がスペクトル用の回折格子を作成している。
しかし、MRIの磁場に関する理解を深めるためには、物理学的な観点からの考察が重要だ。MRIは強力な磁場を使用し、その中で水素原子が特定の周波数で共鳴する。この共鳴により、体内の水素原子から放出される信号を捉えて画像化する。ここで注目すべきは、この信号が電磁波の一種であるということだ。
マクスウェルの方程式によれば、電場の変化が生じると、磁場も変化し、その逆もまた然りである。したがって、MRIのように強い磁場が作用する環境では、電場も生じることになる。MRIで用いられる磁場は、患者の体内に存在する水素原子からの信号を生成し、これを受信することで画像を形成するが、この過程も電磁波の生成に関連している。
このように、MRIでの磁気の波は、単に磁場の変化に留まらず、物理学的には電磁波として理解されるべきである。この観点から見ると、MRIが生成する信号は、電磁波の一種として捉えることができ、従って、電磁波に関する理論や法則が適用される。
患者がMRIを受ける際、体内を通過する電磁波が安全である理由は、これらの波が非常に低いエネルギーを持つためだ。X線とは異なり、MRIの電磁波は生体に対する影響が少なく、非侵襲的な画像診断を可能にする。したがって、MRIは多くの医療現場で不可欠なツールとなっている。
MRIにおける磁気の波とその物理的な性質を理解することは、医療技術の進歩だけでなく、医療現場での信頼性や安全性を高めるためにも重要だ。今後の研究や技術の発展により、MRIがさらに進化し、より多くの人々に利益をもたらすことが期待される。磁性体
編集磁石のまわりには別の磁石を動かす力のもととなるものが生じている。 これを磁場(じば、magnetic field)あるいは磁界(じかい)と呼ぶ。(日本の物理学では磁場と呼ぶことが多く、また、日本の電気工学では磁界と呼ばれることが多い。明治期の訳語の際の、日本国内の業界ごとの違いに過ぎず、地域社会的な事象であり、呼び方は物理の本質とは関係ないので、ここでは、どちらの表現を用いるかは、本書では特にこだわらない。英語では物理学・電気工学とも“magnetic field”で共通している。)
鉄やコバルトやニッケルに磁石を近づけると、磁石に吸い付けられる。 また、鉄やコバルトやニッケルに強い磁化を与えると、鉄やコバルトやニッケルそのものが磁場を周囲に及ぼすようになる。 このような、もともとは磁場を持たなかった物体が、強い磁場を受けたことによって磁場を及ぼすようになる現象を磁化(じか、magnetization)という。
あるいは電荷の静電誘導と対応させて、磁化のことを磁気誘導(じきゆうどう、magnetic induction)ともいう。 そして、鉄やコバルトやニッケルのように、磁石に引き付けられ、さらに磁化をする能力がある物体を強磁性体(きょうじせいたい、ferromagnet)という。 鉄とコバルトとニッケルは強磁性体である。
銅は磁化しないし、銅は磁石に引きつけられないので、銅は強磁性体ではない。
- 磁気遮蔽
静電誘導を利用した、静電遮蔽(せいでんしゃへい)と言われる、中空の導体をつかって物質を囲むことで外部電場を遮蔽する方法があったのと同様の、磁気の遮蔽が、強磁性体でも出来る。中空の強磁性体を用いて、強磁性体の内部は磁場を遮蔽できる。これを磁気遮蔽(じきしゃへい、magnetic shielding)という。磁気シールドともいう。
- 磁性体:magnetic substance
- 強磁性体:ferromagnet
- 常磁性体:paramagnetic substance
- 反磁性体:diamagnetic snbstance
反磁性体が分かりづらいかもしれないが、単に、その材料に加えられた磁場を打ち消す方向に、磁化をするだけの材料である。
そもそも、磁力線とあまり相互作用しない物質も多い。たとえば、ガラスや水による、磁気への影響は、真空の場合とほとんど変わらない。ガラスや水の比透磁率(ひ とうじりつ) μ (ミュー)は、ほぼ1である。
なお、鉄の比透磁率は、状態によって透磁率に数百〜数千の違いがあるが、wikipedia日本語版で調べた場合の鉄の透磁率は約5000である。
では、透磁率がほぼ1の物質は、磁場の方向は、外部磁場を基準として、どちら向きだろうか? 外部磁場を打ち消す方向に磁化しているのだろうか? それとも、外部磁場と同じ方向に磁化しているのだろうか?
その違いこそが、常磁性(じょうじせい)と反磁性(はんじせい)のちがい、である。
ある物質が、外部磁場にほとんど反応しないが、しかし少しだけ外部磁場と同じ方向に、磁化をしている現象のことを常磁性といい、そのような物質を常磁性体という。常磁性体をあらわす物質として、アルミニウムや空気などある。
一方、ある物質が、外部磁場にほとんど反応しないが、しかし少しだけ外部磁場を打ち消す方向に、磁化をしている現象のことを反磁性といい、そのような物質を反磁性体という。反磁性体をあらわす物質として、銅や水や水素などがある。
※ 範囲外: スピンと磁性体
編集元素や分子の種類によって、磁性のちがいがある理由として、化学結合での電子軌道に原因があると考えられている。
化学の教科書の発展事項に、「s軌道」や「p軌道」などの理論があるが、この理論で、その理由を説明できるとされている。なお、答を先にいうと、「d軌道」の特徴が、磁性の原因である。(証明は省略)
元々、(化学結合で電子殻(でんしかく)に発生することのある)孤立電子には磁性があり、その磁性が電子が2個そろって(孤立でなくなり)電子対になる事で、磁性が打ち消しあっていると考えられる。なお、孤立電子がもともと持っている磁性のことをスピンという。よく化学の理論では、スピンを上矢印「↑」と下矢印「↓」の2種類であらわす事が多いのであるが、その理由はもとをたどれば、そもそも磁石の向きが2種類(たとえばN極とS極という2種類の極がある)であるからである。
電子殻とは、化学Iの始めのほうでも習う、「K殻は8個の電子が入る」などの、アレのことである。
まとめると、
- そもそも単独の1個の電子には、じつは磁性がある。そのため、孤立電子には磁性がある(スピン)。そしてこの磁性こそが(電子の「スピン」と言われる磁性こそが)、おそらく孤立電子が電子対になろうとする理由のひとつであり、つまりそもそも共有結合が起きる理由のひとつであろう。
- しかし、化学反応によって孤立電子は、化学結合として、すぐに周囲の分子や原子と結合してしまうので、孤立電子ではなく電子対になってしまい、2個の反対方向の磁性をもった電子対が、磁性を打ち消しあう。おそらく、このような理由により、多くの(化学結合の結果である)物質は、外部磁場との相互作用が弱い物質が多く、強磁性となる元素や分子の物質は少なく、多くの元素や分子の物質は常磁性または反磁性になってしまうであろう。
すでにパソコンなどのハードディスクの読みとりヘッドのセンサーで「スピンヘッド」という技術が実用化されてるが、しかし、これは、けっして、各電子のスピンに情報を記録しているわけではない。
そもそも、ハードディスクのディスク側の技術ではなく、ディスクの情報を読み取るセンサーであるヘッド側の技術である。
このスピンヘッドは、「巨大磁気抵抗効果」(きょだい じきていこう こうか)と言われる現象を利用しており、このような物理現象の起きる原理として仮説としてスピンが想像されているので「スピンヘッド」というのである。
「巨大磁気抵抗効果」とは、厚さが うすめ(厚さ 数ナノメートルほど)の非磁性体の導体金属を、上下に磁性体の層で挟むと、その上下の磁性体が同じ向きに磁化している場合と、いっぽう反対方向に磁化している場合とで、挟まれた非磁性の導体金属の電気抵抗の値が、違っている、という現象である。
ハードディスクの応用のほかにも、高精度の磁気センサーとして、「スピンヘッド」技術は実用化している。
いっぽう、この「スピンヘッド」技術とは別に、磁気抵抗効果を、パソコンのメモリー内にある個々のメモリー素子に応用する事で大容量かつ電力消費のすくない「磁気メモリ」をつくろうとする研究開発がされており、エレクトロニクスならぬ「スピントロニクス」として期待されている。しかし、「上下の磁性体の磁化の向きを変えるための電気コイル回路を、どうやって微小化して、素子として大量に配置すればいいのか?」という未解決の難題があり、よって2017年の時点では、まだ、高容量の磁気メモリーは実用化していない。
※ 範囲外: 「強誘電体」と圧電体
編集「磁性体に『強磁性体』があるのなら、誘電体にも『強誘電体』があるのか?」のような疑問は、とうぜん、思うであろう。
チタン酸鉛 や、ニオブ酸リチウム が、「強誘電体」に分類される場合もある。
しかし、強磁性体が磁気テープや磁気ハードディスクなどの記録メディアに用いられている状況とは異なり、「強誘電体」は記録メディアには用いられていない。過去には、そのような「強誘電体メモリ」を目指す研究開発もあったが、しかし2017年の時点では、まだ「強誘電体メモリ」のようなデバイスは実用化していない。
ただし、他の用途で、これらの物質は産業に実用化されている。
チタン酸鉛やニオブ酸リチウムは、この物質に圧力をくわえると電圧が発生する事から、圧電体(あつでんたい)という素子として活用されている。(※ 『高等学校化学I/セラミックス』で「圧電性セラミックス」として圧電体を紹介。高校化学の範囲内である。2017年の現在では高校3年の選択化学(専門化学)の範囲内だろう。)
なお、これらの圧電体に、電圧をくわえると、物質がひずむ。
このため、圧電体に交流電圧を加えることで、圧電体が短時間で何回も周期的に振動することにより、圧電体の周囲にある空気も振動させる事ができるので、超音波を発生するための素子として、すでに実用化されている。
なお、ある種類の物質が、圧力をくわえると電圧が発生する現象が起きる物質の場合、そのような性質のことを圧電性(あつでんせい)という。
半導体
編集ケイ素 Si やゲルマニウム Ge は、導体と絶縁体の中間の抵抗率をもつことから、ケイ素(英: silicon)やゲルマニウム(英: germanium)などは半導体と言われる。
この半導体の結晶に、わずかに、リンPなどの不純物を入れることで、抵抗率を大きく下げられる。
- (※ 範囲外、注釈: )暗黙の前提すぎるので、検定教科書ではいちいち説明されないかもしれないが、いわゆる「パソコン」や「コンピュータ」などのハードウェアの内部は、主に半導体からなる部品である。
- パソコン部品のうち、いわゆる「メモリ」や、なんとか「チップ」とか言われる部分の材料は、たいてい、下記のような意味でのシリコン半導体からなる部品である、
n型半導体
編集ケイ素原子は価電子が4個であり、ケイ素の結晶は、4つの価電子が共有結合をしている。
これにリンPが加わると、リンは価電子が5個なので、1個の価電子が余り、この余った価電子が自由電子として、結晶を動き回れるようになる。
このような仕組みで、ケイ素にリンを加えることで、抵抗率が大きく下がる、というのが定説である。
このように、負の電子が余ることで、導電率が上がってる半導体を n型半導体 という。(「n」は negative の略。)
p型半導体
編集シリコンの結晶に、不純物として、ホウ素BやアルミニウムAlなど、価電子が3個の元素が加わると、電子が1個、足りなくなる。
この、電子の不足したぶんの空席を正孔(postive hole、ホール)という。
正孔は正電荷をもつ。
電圧が掛かると、この正孔を埋めるように近くの結合にあった電子が移動するが、もとの電子があった場所に新たな正孔ができるので、見かけ上は正孔が電子と逆方向に動いたように見える。
よって、正孔が動くことで、電流を流している、と見なせる。
また、このように、正の電荷をもつ粒子によって導電率が上がってる半導体を p型半導体 という。(「p」は positive の略。)
キャリア
編集n型半導体では電子が電流を運ぶ。
p型半導体では正孔が電流を運ぶ。
このように、半導体中での電流の担い手を、キャリア(carrier)という。
つまり、n型半導体のキャリアは電子で、p型半導体のキャリアは正孔である。
pn接合
編集p型半導体とn型半導体を接合し(pn接合)た物体が、一方向のみに電流を流す。
このような部品をダイオード(diode)という。
p側に正電圧を掛け、n側に負電圧を掛けた時、電流が流れる。
一方、p側に負電圧を描け、n側に正電圧を掛けても、電流が流れない。
回路において、ダイオードが電流を流す向きを順方向(じゅんほうこう)という。順方向とは反対向きを逆方向という。ダイオードの逆方向には、電流は流れない。
このように一方向に流れる仕組みは、ダイオードでは、つぎのような仕組みで、電流が流れるからである。
このように一方向にだけ電流を流すことを整流(せいりゅう)という。なお、半導体を使わなくても、真空管でも整流だけなら可能である。(ただし真空管の場合、熱の発生が膨大であったり、耐久性が劣るので、電子部品としての実用性は、空管は低いので、現代は真空管は電子部品としては使われていない。)
パソコンで、デジタル波形やデジタル信号のように四角の電流波形を作っている方法は、おおむね、このダイオードと、後述するトランジスタとを、うまく組合せることで、デジタル波形をつくるという仕組みである。(※ 数研出版の検定教科書も、そういう見解である。)
- p側に正電圧を掛け、n側に負電圧を掛けた時
ダイオードのp側に正電圧をかけ、n側に負電圧をかけると、p側では正電極の正電圧から正孔が反発して接合面へと向かい、n側では電子が負電極から反発して接合面へと向かう。そして、接合面で正孔と電子がであい、消滅する。この結果、見掛け上、正電荷が、正電極から負電極に移動したのと、同等の結果になる。
そして、正電極から、つぎつぎと正孔が供給されるので、電流が流れ続ける。
- p側に負電圧を描け、n側に正電圧を掛けた時
いっぽう、p側に負電圧を描け、n側に正電圧を掛けた時、p側では正孔は電極(電極には負電圧が掛かっている)に引き寄せられ、接合面からは遠ざかる。同様にn側では電子が電極(正電圧が掛かってる)に引き寄せられ、接合面からは遠ざかる。
この結果、接合面には、余分な正孔も余分な電子もない状態となり、よって接合面の付近にはキャリアがなく、この接合面付近のキャリアの無い部分は空乏層(くうぼうそう、depletion layer)と呼ばれる。
そして、それ以降は、正孔も電子も、もうどこにも移動の余地がないので、よって電流が流れない。
物理学や化学でいう半導体とは、上述のように、シリコンなどの結晶および、それらの結晶に、不純物を加えることで電気特性を調整した物質の事である。
いっぽう、磁性体は、半導体ではない。
しかし、世間一般では、大企業の「半導体メーカー」とされる企業が生産した電子部品が、まとめて「半導体」と言われることもあり、このため、たとえ磁性体を活用した製品であり、半導体をあまり活用していない製品であっても、半導体と言われることも多い。
よくある例としては、磁気ハードディスクですら「半導体」と言われる場合もある。
しかし、物理学では、磁性体は、けっして半導体ではない。化学でも同様に、「磁性体は、けっして半導体ではない」として扱う。
磁性体だけでなく、液晶も同様である。 同様に、液晶ディスプレイも、液晶のぶぶんは、半導体ではない。
大学の物理や化学でも、磁性体は、半導体ではない、として扱う。液晶も同様であり、大学では、液晶は半導体ではない、として扱う。
本wikibooks高校教科書でも、磁性体や液晶は、半導体ではない、として扱う。
なお、中学高校の社会科の地理科目の工業統計では、きちんと「電子部品」という表現で、半導体や液晶、ハードディスクなどを、まとめて表現している。
トランジスタ
編集半導体を3つnpnまたはpnpのように組み合わせると、電流を増幅(ぞうふく)することができる。増幅作用(ぞうふくさよう)という。
NPNとは、片端から順に見てN型・P型・N型の順に並んでるという事である。
同様に、PNPとは、片端から順に見てN型・P型・N型の順に並んでるという事である。
増幅といっても、けっして無からエネルギーが発生するわけではないので、混同しないように。
説明の簡略化のため、外部電源が省略される事があるが、実際は外部電源も必要である。半導体素子は小さな電流しか流せぬから、電流を減らすための抵抗素子としての保護抵抗(ほごていこう)も必要である。
なお、図のように長方形状に並んでいる方式のトランジスタをバイポーラトランジスタという。(※ 検定教科書の数研出版の教科書で、「バイポーラトランジスタ」をコラムで習う。)
バイポーラトランジスタには、端子が主に3つあり、「エミッタ」や「ベース」や「コレクタ」という合計3つの端子がある。
バイポーラトランジスタでの電流の増幅とは、ベース電流を増幅してコレクタに集めるである(PNPの場合)。電流の向きはPNP型のばあいと NPP型のばあいとでは異なるが、どちらの場合でもベース電流が増幅されるという仕組みは共通である。
さて、模式図では模式的に真ん中の半導体はうすめ、小さめに書かれるが、実際のトランジスタは真ん中の半導体はそうではないので、参考程度に。
教育では、半導体の高校生や専門外(電子専攻以外)の人むけには、よくバイポーラトランジスタが単純なので紹介されるが、実際に市販のコンピュータ部品などでよく使われるトランジスタの方式は、これとは形状がけっこう異なる。
市販のコンピュータ部品のトランジスタには、電界効果トランジスタといわれる方式のものが、よく用いられる。(もちろん、電界効果トランジスタにも、「増幅」の機能がある。)
- (※ 啓林館の検定教科書で、「電界効果トランジスタ」がコラム欄で紹介されている。)
- ※ 電界効果型の場合は、「ソース」や「ゲート」や「ドレイン」などの端子がある。原理は異なるので、対応はしない。
(※ 詳しくは大学の電気工学または工業高校の電子回路などの科目で習う。)
トランジスタは、回路図では、模式的に下図のように書かれる。
- 「真空管トランジスタ」とは別物
実は、電流増幅回路をつくるだけなら、真空管でも作れるが現代では真空管には経済的な実用性が無いので、真空管の増幅回路は、一般の製品にある電子部品としては、使われていない。なお、真空管の電流増幅回路のことも「トランジスタ」というので、混同しないように注意のこと。
- 露光機なしでも手作業でトランジスタを作れるという報告あり
学術書の出典は無いので、やや不確かさな情報であるが、 実はダイオードやトランジスタは、作るだけなら、材料を融かす「るつぼ」などの高温用設備さえあれば、あとは材料のシリコンや添加物のリンなどだけで、作れてしまうと言われている。(つまり、露光機(ろこうき)などの微細加工の設備は、無くてもダイオードなどを作れる、という。)
そもそも、半導体トランジスタの発明者が試作品として点接触トランジスタを製造した時代には、まだ露光機などの設備は無かったのだから、考えてみれば露光機なしでもトランジスタ自作が可能なのは当然といえば当然ではある。
歴史的な経緯で、理科教育では半導体工学を説明する際に、トランジスタなどの発明当時の先端理論である「量子力学」(りょうし りきがく)という原子スケールの世界の物理法則の理論をまとめて説明するので、あたかも半導体の製造にも原子スケールの微細加工のための設備が不可欠のように想像しがちであるが、実は露光機などの設備はなくてもトランジスタは作れてしまうらしい。
露光機などを使わないで材料とルツボなどの比較的に単純な設備だけで手作業的に自作した半導体は、集積度が低いので実用には無らない事もあり、工学書などでは紹介はされないのであろう。
(別件かもしれないが、)そもそも、半導体の発明当時は、女性工員とかに細かい配線作業などをさせていた時代もあった(「トランジスタ・ガール」と言われていた)、と言われるくらい。
ダイオードやトランジスタの他にも半導体を組み合わせた電子部品はあるが(他にも「サイリスタ」とか色々とある)、高校物理の範囲を超えるので、説明は省略する。(※ もし仕事で専門的な情報が必要になれば、工業高校むけの『電子回路』の教科書にけっこう詳しく書いてあるので、それを読めばいい。なお、書店の資格コーナー本にある電気工事士や電気主任技術者試験とかの対策品には、ほぼ電子回路が範囲外なので、あまり電子回路の説明は書いてない。なので、工業高校『電子回路』の教科書、または工業高専などの同等の科目の教科書を参照のこと。)
- ※ 集積回路について、1990年代くらいの参考書の数研出版チャート式の物理2に、後述のような集積回路などの説明があった。
- 2010年以降の現在、『情報』教科が2000年代に加わったので、CPUなどの説明の一部が『情報』教科に移動している。
パソコンのCPUなどの部品も、中身の多くは半導体であり、ダイオードやトランジスタなどの素子がCPUなどの内部にたくさんある、と言われている。(※ 他にも「水晶振動子」とか色々とCPU内には あるが、物理2の範囲外なので説明を省略。)
集積回路やLSI(Large Scale Integrated、大規模集積回路)などと言われる組織も、なにを集積(「集積」を英語で integrate インテグレート という)したのかというと、半導体素子を集積したと言う意味である。
なお、「IC」(アイシー)とは Integrated Circuit の略称であり、これを和訳したものが「集積回路」である。
つまり、集積回路やLSIの中身は、半導体であり、トランジスタなどの素子が高密度で、その回路中に詰まっている。
電子部品の半導体の材料としては、通常はシリコン結晶が使われる。(※ 啓林館、数研など、結晶であることも言及。)
研究開発ではシリコン以外の材料も研究されており一部の特殊用途ではGaAsやInGaPなどが利用されているが(※ 数研の検定教科書はGaAsやInGaPなどにコラムで言及)、しかし現状では、シリコンが市販のコンピュータ部品中の半導体素子の材料では主流である。
なお、シリコン半導体の材料内部はシリコン結晶であるが、表面は保護膜および絶縁のために酸化させられており、シリコン半導体表面は酸化シリコンの保護膜になっている。シリコンが酸化すると、絶縁物になるので、保護膜になるわけである(※ 数研出版の教科書もそう言っている。)
半導体の内部に、添加物などで特性を変えることにより、抵抗やコンデンサも半導体内部に製造できる。(※ 数研が、抵抗やコンデンサも半導体内部で作っている事に言及。)
(※ 範囲外: )しかし、コイルは半導体内部に作ることが出来無い。
発展: 相対論の一次近似
編集運動する磁束は電場を誘起する
編集磁場Bの中を、電荷qの荷電粒子が速度vで運動すると、ローレンツ力はベクトル外積を用いて f=q・v×B の力が粒子に働くが、ここで観測者の座標系を変えたとして、同じ粒子を、粒子と同じ方向に速度vで動く座標形Kの中の観測者から見たらどうなるか? 座標系Kでは、粒子の速度は v(K)=0 であり、磁束の速度を Vb とすると、前の座標系の粒子とは反対方向に動くので、
- Vb =-v である。
新しい座標系Kから観測しても、粒子が f=q・v×B の大きさの力を受けて加速されることには変わらないが、座標系kでは、荷電粒子は静止していたのに、ローレンツ力を受けたと考えるのは不合理である。磁束は、Vb=-v で運動していたので、磁束の運動によって f=q・(-Vb)×B = -q・Vb×B の力を受けたと考えるべきである。粒子を質量0の質点とみなせば、静止している荷電粒子に力を及ぼせるのは、電場だけだから、つまり速度 Vb で運動する磁束が、 E=-Vb×B の誘導電場を誘起することになる。このとき、磁場と誘導された電場は垂直である。
運動する電場は磁界を作る
編集もし、「運動する電場は磁界を作る」とすれば、アンペールの法則 「直線状に無限に長い導線を流れる 電流I は距離R だけ離れた場所に B・2πr=μI の磁場を作る。」という現象は、じつは「導線の中で荷電粒子が運動することによって、荷電粒子といっしょにその粒子が作る電場も動き、その電場の運動が、磁場を誘起している。」という可能性がある。 電流が流れている無限長の、まっすぐな導線を考える。線密度 q[C/m] で分布した電荷は、図のように円筒対称な電荷を作る。
(※ ここに図を。)
直線から距離rのときの電気力線の密度Dは
- D=εE=
よって
- εE・2πr =q ①
電流 I は電荷分布 q が速度 Ve で運動しているとして
- I = qVe
- [A]=[c/m]・[m/s]=[c/m]
と定義すれば、
電流 qVe が距離 r のところに作る磁場Bはアンペールの法則から、
- B・2πr(=μI)= μqVe ②
となる。
このとき、磁場の向きは、Ve から 半径r方向 にねじを回す向きである。
- ②÷①から B/εE = μ Ve B=εμ Ve・E
向きまでふくめてベクトル積で表せば、
- =εμ となる。
つまり
- 速度 Ve で運動する電場 E は、誘導磁場 B=εμVe×E を作る。
という、重要な結論が得られる。
あるいは、 μH=B をもちいて B=μH=εμ Ve ×E より
- H=εμVe×E となって、さらに D=εE より
- H=μVe×D
である。
まとめ
速度 Vbで運動する磁束Bは
- E=-Vb×B
の誘導電場を誘起する。 ・・□1
速度 Ve で運動する電場 E は
- B = εμ Ve × E
の誘導磁場を作る。
E,Bのかわりに、D,Hを使って表記すれば、
- D = -ε Vb × B
かつ
- H = Ve × D (・・・□2)
さて、電磁波が速度Cで真空中を伝わるとすれば、 Vb = Ve = C とする。 □1式と□2式の外積をとると、
- E×H =(-Vb×B)× (Ve×D) = (-C×μH) × (C×εE)
- = εμ ( C2) E×H
よって
- εμ・c2 =1
である。
よって、電磁波の速度は と予測できる。
このεとμに実測値を入れると、光速の測定値 と、高い精度で一致する。
この事から、光は、電磁波である事が分かる。また、電磁波は、光速度Cで真空中を伝わる。
また、これより、運動電場の誘導する磁場は
- B = (1/ C2 )Ve×E ③
とも変形できる。
③式を、ガウスの法則(①式) と組み合わせると、アンペールの法則(②式)が得られる。 よって、「速度 Ve で運動する電場 E は、 B=εμ Ve ×E の誘導磁場を作る。」という過程が妥当だったことがわかる。
ポインティング ベクトル
編集電磁波では電場 E と磁場 B が光速 C で運動しているので 磁束の運動速度 Vb は Vb = C であり、誘導電場 E は E =-Vb×B であるので、両式より E = -c×B である。(電磁波の電場と磁場の関係式)なお
であるので、 電磁波は
の方向に進んでいるはずだ、ということを注目しよう。
この で定義される量を ポインティング ベクトル とよぶ。 これは単位面積をとおって流れ出る電磁場のエネルギーの流れの量をあらわす。
さて、電磁場のエネルギー密度は なので、これに電磁波の電場と磁場の関係式 を代入して、
の関係を用いると、(エネルギーでは、2乗によりマイナス符号がなくなるので、絶対値を取って|E|=|c×B| としておくと、計算が簡単になる場合がある。)
結果として
- (電磁波のエネルギー密度)
となる。 電磁波が、壁にあたって吸収されるとき、単位時間に単位面積あたり 光速C の大きさの体積のなかの電磁波が壁に衝突するので、
- c・u
のエネルギーが、単位時間に単位面積に流れ込むはずである。
s= c・u に u= ε・E^2 を代入して、 と |E|=|c×B|を利用すると、結果的に
- s = = =|E|・|H|
である。
よってポインティング ベクトル E×H は単位面積を通って流れ出る電磁場のエネルギーの流れをあらわす。
- E×Hの単位は [V/m]・[A/m]=[V・A/m2]=[W/m2]
ポインティング ベクトル と 運動量密度
編集ポインティング ベクトル S = E×H = εμ(C2)E×H は
- D=εE と B=μH をもちいて S = E×H =(C2)D×B とも書ける。
である。
天下り的な説明であるが、この G=D×B という量は、運動量の密度である。この量 G=D×B を、電磁波の「運動量密度」(うんどうりょうみつど)という。実際に、D×B の単位は
- [D×B] = [{1 / (C2)}] [E×H] = [1 / (m/s)2] [W/m2]
- = [N・s/m3]
となる。 たしかに、運動量の密度の単位と等しい。
- 発展: 光電効果との関係
ところで、のちの単元で習うが、光電効果では エネルギーuと運動量pの関係は、光速度Cをもちいて、 u=cp と書ける。
- s=c・u は s= cu =|E×H| であり、 u=cp とあわせて、
- s=c (cp) = (c2) p =|E×H|
これより
- p = (1/c2) |E×H| = εμ |E×H|
- = |εE×μH| = |D×B|
向きまで含めて
- p = D×B
となって、確かに G = D×B は運動量密度となる。
電磁誘導の再検討
編集長さLのまっすぐな針金が、速度vで磁場Bの中を横切るとする。簡単のため、針金の軸と速度vの方向と磁場Bは垂直とする。このとき、針金の中の電荷にかかる力および電場はローレンツ力により、
- F = q v×B
- F/q = E = v×B の電位が、針金の長さ方向に派生する。
電場Eにそって長さLだけ、電荷qが上げられたら、エネルギーは qEL 変化する。電位は V=EL である。
- V = LvB = ⊿Φ/⊿t
これより、誘導電圧 V は、磁束の1秒あたりの時間変化になる。 では、仮に固定された回路の中にソレノイドを通して、このソレノイドに交流電流を流した場合も、回路に誘導電圧が発生するのであろうか。答えは「する」。
コンピュータ以外の用途でも、比較的に大き目の電流や電圧などをつかう電機設備や強電(きょうでん)設備などで、整流などの目的で、電機設備のための専用の半導体ダイオードを使うことがある。
パソコン用の半導体と、電機設備用の半導体とは、(物理学的な原理はほぼ同じであるが)製品としては、まったく定格(ていかく)電流・定格電圧などの仕様の異なる別製品なので、混同しないように。使用可能な電流の定格値がまったくケタ違いに(パソコン用と電気設備用とでは)違うので、絶対に混同してはいけない。
もし仮に、本来なら電気設備用の半導体で整流すべき場所を、パソコン用の半導体で整流すると、きっと事故などにつながり危険なので、絶対に混用せぬこと。
- ^ 西條敏美『測り方の科学史 II 原子から素粒子へ』、恒星社、2012年3月15日初版発行、45ページ
北海道大学出版『近代科学の源流~物理学編』1974~1977年を参考にしたようだが、北海道大のこの文献は絶版である