このページでは平面図形の面積の公式の解説をする。なお、ここでは説明の都合上公式集と順番を入れ替えた箇所があることを承知していただきたい。
そもそも面積とは平面あるいは曲面の広さ、大きさを表すものである。これの基準となるものは1辺が1の正方形である。1辺が1の正方形の面積を1と定義することで、あらゆる図形の面積が定義される。
長方形の面積
編集
- 与えられた長方形の中に面積1の正方形をいくつ敷き詰められるかを考えればよい。その正方形の個数がすなわち面積となるからだ。例えば縦が3、横が4の長方形を考えると、この中には12枚の、基準となる正方形が入る。縦が3ということは、縦に3列並べることができ、かつ横が4なのでそれを横方向に4行並べることができるからだ。そのため、これは3×4という計算で導くことができる。これはすなわち、各辺の長さと一致するから、縦の長さと横の長さを掛け合わせることで、面積が求められる。
正方形の面積
編集
- 正方形は「縦と横の長さが等しい長方形」と言い換えることができる。長方形の面積 は前述の通りだが、ここで、縦と横が等しいので ということができる。これを長方形の面積の公式に代入すると が得られる。
平行四辺形の面積
編集
- 与えられた平行四辺形を、図のように分割し、並べ替えると長方形と見ることができる。この長方形の横の長さは平行四辺形の底辺と、縦は平行四辺形の高さと一致するので、面積は底辺と高さを掛け合わせることで得られることが導かれる。
台形の面積
編集
- 三角形の場合と同様の考えで導き出される。与えられた台形と合同な台形を作る。2つの台形のうち片方を180°回転し、長さが等しい辺で結合すると、平行四辺形が得られる。なぜならば、合同な台形は対応する角が等しいため、1組の対辺について錯角が等しくなるからである。そのため、台形の面積はこの平行四辺形の面積を出した後に2で割ることで得られることがわかる。この平行四辺形の底辺は台形の上底と下底との和と、平行四辺形の高さは台形の高さと一致するので、これらを掛け合わせて2で割ることで面積が得られる。
三角形の面積
編集
- 与えられた三角形と合同な三角形を作る。2つの三角形のうち片方を180°回転し、長さが等しい辺で結合すると、平行四辺形が得られる。なぜならば、合同な三角形は対応する角が等しいため、2組の対辺それぞれについて錯角が等しくなるからである。そのため、三角形の面積はこの平行四辺形の面積を出した後に2で割ることで得られることがわかる。この平行四辺形の底辺は三角形の底辺と、平行四辺形の高さは三角形の高さと一致するので、これらを掛け合わせて2で割ることで面積が得られる。
三角形の合同条件から面積を求める公式
編集三角形の合同条件は、
- 三辺が等しい。
- 二辺とその間の角が等しい。
- 二角とその間の辺が等しい。
のいずれかが成立することであるが、この合同条件をみたす値がわかっていれば、一意にその三角形の面積が得られることとなる。
三辺の長さから面積を求める場合
編集- ヘロンの公式。
- ……①
- ……②
二辺とその間の角から面積を求める場合
編集正弦の定義から
二角とその間の辺から面積を求める場合
編集において、 とわかっている場合、 と置くと、この三角形の面積は、上記から、
- ……A
正弦定理から、
即ち、
bについて解くと、
Aに代入すると、
を得る。
円が内接する三角形の面積
編集
三角形に円が内接しているということは、円に接する辺はすべて接線ということです。
接線と半径は垂直に交わるので、辺に対する半径は高さとなり、
それぞれの辺に対して(半径)÷2を掛ければ値が求まります。
よって、
正三角形の面積
編集
- 正三角形の高さは、ある1つの角から対辺に引いた垂線の長さです。
- この垂線(青線)は、左右を合同な直角三角形に2等分する線でもあるので、右図緑線の長さは赤線の半分です。
- よって右図青線の長さは、三平方の定理によって求めることができます。
- 底辺と高さが出たので、
ひし形の面積
編集
円の面積
編集
- 円の面積の導出はいくつか方法がある。ひとつは円をいくつかの合同な扇形に分割し、それを組み合わせると長方形に近似できる、というものである。ここではそのほかの導出法として、積分によって導出することにする。
- 座標平面上で原点を円の中心とする、半径 の円 を考える。円の面積は同一の点を中心とする円の周を総合したものと考えることができるため、半径 の円周を から まで積分することで面積が得られる。半径 の円の円周は、 (これは円周率の定義である)であるので、次のように計算して得られる。