線形代数学/逆行列の一般型
< 線形代数学
線型代数学 > 逆行列の一般型
逆行列の一般型
編集逆行列は、
で書かれる。 ここでCは、Aの余因子行列である。
導出
第l行について考える。(l = 1 , ... , n) このとき、l行l列について ACを考えると、 , ( は、行列Aの行l、列mに関する小行列式。) (式の展開の逆) また、l行で、i列(i = 1, ... , n : l 以外) について ACを考えると、 これは、行列Aで、i行目をl行目で置き換えた行列の行列式に等しい。 行列式で行列のうちのある行か、ある列が他の行か他の列と一致する場合、 その2つの行または列からの寄与は必ず打ち消しあう。 (導出?) よってi列からの寄与は0に等しい。 よって求める行列 ACは、 となり、 は、(CはAの余因子行列) Aの逆行列に等しいことが分る。
実際にはこの計算は多くの計算量を必要とするので
実用的な計算には用いられない。
実用的な計算にはガウスの消去法が
用いられることが多い。