高等学校の学習 > 高等学校理科 > 高等学校 化学 > 高校化学 金属と合金

純度の高い鉄の単体は、灰白色であり、比較的やわらかい。

鉄の製法

編集

鉄鉱石からの鉄の精錬では、赤鉄鉱   や磁鉄鉱   などの鉄鉱石を溶鉱炉で溶かし、コークス   、石灰石   を加えて発生する一酸化炭素   で還元して、鉄をつくる。

 
高炉プロセスの概略図。
Trocken -und Vorwärmzone:乾燥および予熱
Reductionzone :還元の領域 。 Kohlungzone :浸炭の領域
Schmelzzone :融解の領域 。 
Roheisen :銑鉄
schlacke :スラグ

Erz :鉱石 。  koks :コークス 。 zuschläge :追加物

Gichtgas :高炉ガス
  の生成:  
 

鉄鉱石は段階的に次のように還元される。

 

それぞれの反応式は

[450℃]  

[800℃]  

[1200℃]  


全体での反応は次の反応式で表される。

 

また、不純物を取り除くため石灰石 CaCO3 を加える。石灰石によりシリカSiO2やアルミナAl2O3などの脈石(岩石を構成する成分のこと。)が分離される。 このようにして高炉で得られた鉄を銑鉄(せんてつ、pig iron)という。

なお、高炉の内側の耐火性のレンガにより、高炉は高温に耐えられるようになっている。

石灰石は、鉱石中のケイ酸塩と反応しスラグ CaSiO3 を形成する。スラグは密度が銑鉄より軽いため、スラグは銑鉄に浮かぶ。スラグはセメントの原料になるため、スラグは廃棄せず分離して回収する。

また、炭素や石灰石の添加は、融点を下げる役割も有る。凝固点降下と同じ原理である。一般に混合物は融点が下がる。

銑鉄は炭素を質量比4%ほど含む。鉄中の炭素が多いと、粘りが無くなり、衝撃などに対して脆く、硬いが割れやすくなる。 このような鉄は、割れやすいが混合物のため融点が低く、また流動性も良いため鋳造(ちゅうぞう)に用いられる。そのため、炭素含有量の多い鉄は鋳鉄(ちゅうてつ) と呼ばれる。

鋳鉄は割れやすいため、建築材などには不便である。 丈夫な鉄を得るには銑鉄の炭素量を適量に減らす必要があり、転炉で酸素を加えて燃焼させて取り除く。転炉には、酸素吹き込み転炉などを用いる。この酸素吹き込みの酸化熱が、鉄を溶かし続ける熱源に使える。


炭素を0.02%~2%ほど含む鉄を(こう、steel)という。

建築材などの構造材に用いられるのは、十分な硬さと強さをもたせた鋼である。

添加物のため融点は下がり、およそ1400℃で融解し、溶鉱炉の底に溶けた鉄がたまる。 なお、1200℃での反応の式について、温度が高くなりすぎると、逆方向に反応が進んでしまいCO2によるFeの酸化が起きるので、1200℃程度を保つ必要がある。

鉄の化学的性質として、鉄の単体および銑鉄や鋳鉄は、湿った空気中で酸化されやすく、さびやすい。 さびを防ぐため、合金として、鋼にクロム Cr やニッケル Ni などを混ぜた合金がステンレス鋼(ステンレスこう)である。このステンレス鋼は化学的な耐食性が高く、さびにくいため、建築材や台所部材として用いられる。

鉄の化学的性質

編集

純度の高い鉄(てつ)の単体は、灰白色であり、比較的やわらかい。

鉄には酸化数+2または酸化数+3の化合物がある。

鉄の酸化物には、黒色の酸化鉄(II) FeO 、赤褐色の酸化鉄(III)Fe2O3 、黒色の四酸化三鉄 Fe3O4 などがある。

鉄は、湿った空気中で酸化されやすい、よって鉄は、さびやすい。 鉄の赤さびは、 酸化鉄(III)Fe2O3 である。

鉄は希硫酸に加えると、水素を発生して溶け、淡緑色の溶液になる。この水溶液から水を蒸発させて濃縮すると、硫酸鉄(II)七水和物FeSO4・7H2Oが得られる。

いっぽう、濃硝酸では、不動態となり、鉄の表面に皮膜ができて、それ以上は反応が進行しない。

強磁性体

編集

鉄 Fe 、ニッケル Ni 、コバルト Co は、単体で磁性を帯びることができる金属である。

一方、銅やアルミニウムは、磁化されない。

鉄、ニッケル、コバルトのように、磁石になることができる物質を強磁性体という。

銅の特徴として、銅は電気の伝導性が良く、また熱の伝導性も良い。なお、一般に純金属の熱伝導性と電気伝導性は比例する。このため、自由電子が、その金属内で熱を伝える作用があるという説が、定説である。

銅は天然にも単体として鉱石が産出されることがあるが、多くの場合は黄銅鉱CuFeS2などのように化合物として産出する。

性質

編集

銅の単体の外観は、赤色の光沢をもつ。

また、銅は電気伝導性が大きい。このため、電線などの電気材料にも銅が用いられる。

銅はイオン化傾向が水より小さいため、酸には侵されにくいが、硝酸など酸化力の強い酸には侵される。酸化作用の強い酸には、硝酸のほか、熱濃硫酸がある。

銅は、湿った空気中で、緑色の さび である緑青(ろくしょう)を生じる。

銅の精錬

編集

銅の精錬には、まず、黄銅鉱など銅鉱石を溶鉱炉で溶かす。溶鉱炉にはコークスCおよびケイ砂SiO2を加える。

  (おぼえなくて良いかも)

硫化銅Cu2Sは「かわ」とよばれる。この硫化銅は炉の下層に沈む。FeSiO3 は上層に分離する。溶鉱で発生したFeSiO33は「からみ」という。なおFeSiO3 の式をFeOSiO2と書く場合もある。

この硫化銅を転炉で空気を吹き込むと、銅が遊離する。

 

こうして転炉で作った銅を粗銅(そどう)という。粗銅の純度は98.5%程度である。

粗銅の純度を上げる目的で金属のイオン化傾向を利用した電気精錬が行われる。粗銅を陽極にして、純銅板を陰極にして硫酸銅CuSO4水溶液中で電気分解すると、陰極に純度が高い銅(99.97%程度)が析出する。一般に、こうして電気精錬で得られた純度99.99%程度の銅を純銅という。なお、このように電気精錬で得た銅を、電気銅ともいう。 この電気銅が、現在、用いられている銅材料の原料である。

なお、電気精錬の際に、銅中に銀Agや金Auなどの不純物が混ざっていると、電気精錬の際に、銀や金はイオン化傾向が銅よりも低いのでイオン化せず、金や銀が陽極の下に沈殿する。この沈殿を陽極泥(ようきょくでい)という。

  • 参考(※ 範囲外なので、覚えなくて良い。)

電気銅には、まだ水素や硫黄などの不純物が含まれており、それらの不純物を取り除くため電気銅のあとにも精錬は続く。

特に、銅への水素の混入は、水素脆性(すいそぜいせい)という金属材料が脆くなる原因になるので、取り除かなければならない。

銅の化学的性質

編集

銅の化合物

編集
  • 酸化銅

銅を空気中で加熱すると、1000℃以下では黒色の酸化銅(II) CuO を生じ、1000℃以上では赤色の酸化銅(I) Cu2O を生じる。

  • 硫酸銅

銅が熱濃硫酸に溶解した溶液から、硫酸銅の溶液が得られる。

この溶液から、結晶を析出させると、青色の硫酸銅の結晶が得られる。

硫酸銅の結晶の硫酸銅(II)五水和物 CuSO4・5H2O は、青色の結晶である。


硫酸銅(II)五水和物を熱すると、水和水を失って、無水物の硫酸銅 CuSO4 になり、白色の粉末になる。

この硫酸銅の粉末は、水を吸収すると、青色の水和物に戻る。なので、水の検出のさい、硫酸銅が活用されることがある。

アルミニウム

編集

アルミニウムの精錬は、鉱石のボーキサイトからアルミナAl2O3を抽出する工程と、アルミナAl2O3から電解してアルミニウムを得る工程からなる。

バイヤー法

編集

アルミニウムの天然の鉱石はボーキサイト(bauxite)といい、ボーキサイトの化学式はAl2O3・nH2Oである。ボーキサイトに濃い水酸化ナトリウム溶液NaOHを加えてアルミン酸ナトリウム2Na[Al(OH)4]が得られる。正確にはテトラヒドロキソアルミン酸ナトリウムという。

 

アルミン酸ナトリウム2Na[Al(OH)_4]の溶液を冷却し、加水分解がおこると水酸化アルミニウムAl(OH)3 の沈殿が析出する。

 

生じたAl(OH)3 を分離して、このAl(OH)3を1200℃に加熱して酸化アルミニウムAl2O3にする。 これらのボーキサイトからアルミナまでの工程をバイヤー法という。

Al2O3アルミナという。アルミナは融点が高く、約2000℃の融点なので、融点を次の融解塩電解という処理で下げる。


アルミナの融解塩電解

編集

まず、氷晶石を加える。すると融点が下がる。これを電解してアルミニウムにする。 この氷晶石を用いたアルミナの融解の方法をホール・エルー法という。


※ 化学1でも電気分解を紹介してるので、読者は必要に応じ参照されたい。

工程は以下のとおり。 アルミナAl2O3(融点 2072 °C)に氷晶石Na3 AlF6(融点 1012℃)を、割合が氷晶石9.5重量%ほどになるまで少しずつ加える。氷晶石はアルミナにとって不純物であり、不純物との混合によって溶融温度が下がり、融点が約970℃になる。 溶融したアルミナを電気分解によって、精錬する。

また、このように添加物を加えて融点を下げ、溶融させて電解する方法を融解塩電解または溶融塩電解という。


溶融塩電解による精錬は、アルミニウムの他に、酸化マグネシウムMgOからマグネシウムMgを精錬する場合や、酸化チタンTiO2からチタンTiを精錬する場合に用いられる。

ちなみにアルミナAl2O3 はセラミック材料として様々な優れた性質を持っている。 酸化マグネシウム(マグネシアという)や酸化チタンもセラミックス材料として優れた性質を持っている。

アルミニウムやマグネシウムなどのように酸化物からの精錬に手間が掛かる材料は、裏を返せば、アルミナやマグネシアのように酸化物はセラミックスとして安定した性質を持っているということでもある。

合金

編集
 
ステンレス鋼のソースボート(肉汁ボート)
 
ジュラルミンが航空機に用いられた例。画像は旅客機 D.333 。フランス国 Dewoitine社。
 
真鍮(黄銅)の水差し。この画像の水差しは14世紀のエジプトで用いられていた。

2種類以上の金属を溶融して混合したあとに凝固させたものを合金(alloy)という。

一般に合金では、元の金属単体よりも硬さが増す。ここでいう「硬い」とは「やわらかくない」「変形しづらい」というような意味であり、必ずしも割れにくいとは限らないので注意。また一般に合金の電気抵抗は、もとの金属よりも合金の電気抵抗が上がる。その仕組みの説明として、合金元素によって結晶配列が乱れるから、というのが定説である。

主要な合金の例を示す。

  • 黄銅
銅60%~70%と亜鉛10%~40%の合金。
銅Cuが60%程度で亜鉛Znが40%程度の黄銅を六四黄銅(ろくよんおうどう)という。銅Cuが70%程度で、亜鉛Znが30%程度の黄銅を七三黄銅(しちさんおうどう)という。
合金化により硬くなり、強度が高まる。色は黄色い。w:ブラスバンドのブラスとは黄銅(brass)のことである。真鍮(しんちゅう)ともいう。


  • 青銅
銅とスズの合金。
ブロンズ(bronze)ともいう。亜鉛などが加えられる場合もある。銅とスズのみを主成分とする青銅を、すず青銅という。
合金化により硬くなり、強度が高まる。鏡として用いられる場合もある(青銅鏡)。


  • 白銅
銅80%とニッケル20%の合金。
組成中のNiの増加とともに、色が銅の赤色からニッケルの白色に変わっていく。
腐食しづらく耐食性が良い。日本の貨幣の50円硬貨100円硬貨の材料。


  • 洋銀
組成:Cuに,Ni=5%~30%,Zn=5%~30%
ニッケルシルバともいう。
  • ステンレス鋼
組成:Fe=70%,Cr=20%,Ni=10%
鉄にクロムとニッケルなどを混ぜたもの。錆びにくい。
  • ジュラルミン
組成:Al 95 %,Cu,Mg,Mn
軽くて強度が大きいので航空機材料や自動車材料などに用いられる。


  • はんだ
鉛とスズの合金。融点が低い。はんだは電気回路部品の接合などに用いられたが、鉛の有害性が指摘され、最近では無鉛はんだが用いられる。
  • ニクロム
ニッケル60%~80%とクロム20%の合金。ニッケルとクロムだからニクロムという。
電気抵抗が大きい。電気抵抗材料に用いられるニクロム線の材料である。

ブリキとトタン

編集
 

酸素や水と接触した金属は表面で酸化還元反応を起こし、金属がイオン化し脱落する。この反応を腐食という。イオン化した金属が酸化物や水酸化物となって表面に堆積したものを錆という。


鋼板にスズをメッキしたものをブリキ、亜鉛をメッキしたものをトタンという。イオン化傾向が   のため、ブリキはスズが鉄の腐食を防いでいる。しかし、メッキが傷つき鉄が露出した箇所に水がつくと、イオン傾向の大きい鉄がスズよりもイオン化しやすいため、鉄が腐食しやすい。トタンは、亜鉛が鉄より腐食しやすいが、鉄が露出した箇所があってもイオン化傾向の大きい亜鉛が鉄よりイオン化しやすいため、内部の鉄の腐食が防がれる。

つまり、傷がなく鉄が露出していない場合はブリキの方が錆びにくいが、傷がついた場合はトタンの方が錆びにくい。このため、ブリキは缶詰や金属玩具などに用いられ、トタンは屋根やバケツなどに用いられる。

その他の合金

編集

水素吸蔵合金

ランタン-ニッケル合金やチタン-鉄合金などは、常温で合金の結晶間に水素を吸蔵する性質を持つ。加熱などによって水素を放出することができる。これらの合金は、自身の体積の1000倍以上の水素を吸蔵できるものもある。

ランタン-ニッケル合金を使用したニッケル水素電池は実用化されており、ハイブリッド自動車で使用されている。今後は水素自動車や燃料電池自動車の燃料タンクとしても期待され、さらに開発が進められている。チタン-鉄合金系の水素吸蔵合金も存在する。

形状記憶合金

チタンとニッケルの合金には、特定の高温で成形した形状を記憶し、常温で変形しても加熱することで元の形に戻る特性を持つものがある。これを形状記憶合金(shape memory alloy)という。眼鏡フレームなどで利用されている。

超伝導合金

ある物質は、非常に低温(絶対零度に近い温度)で電気抵抗がゼロになる。この現象を利用した超伝導合金として、スズとニオブの合金が代表例である。超伝導合金は、強い電磁石を作る際や医療用MRI(磁力を利用して人体の断層写真を撮影する装置)などに使用されている。

スズ-ニオブ系のほかにも、さまざまな超伝導合金が知られている。

アモルファス合金

アモルファス合金は、結晶構造を持たない非晶質の合金である。製法としては、高温状態で柔らかくなった金属を急冷することで、原子が通常の結晶構造での位置に配置される前に固化する。このため、結晶構造を持たず、異なる特性を示すことが多い。

アモルファス合金は、磁気記録用ヘッドなどに利用されており、鉄系のアモルファス合金は耐腐食性が必要な環境で使われることがある。ただし、高温で加工すると結晶化してしまうため、高温での加工ができないという短所がある。

いろいろな金属

編集

タングステン

編集

タングステン W は融点がきわめて高く(融点3400℃)、耐熱性が大きいので、電球のフィラメントなどに用いられる。 金属では、タングステンが、もっとも融点が高い。

また、炭化タングステン WC は、かなり硬い。

白金

編集

白金 Pt は、銀白色の固体で、化学的な安定性が高い。

かつて、メートル原器の材質として用いられていた。

触媒としても、用いられている。