小学校算数/算数から数学へ
算数から数学へ
編集小学校では「算数」を学んできました。しかし、「算数」の学習は小学校で終わります。中学校
ここでは、中学校の数学の内容を少しだけ
中学校の「数学」の紹介
編集負の数
編集
小学校では、0より小さい数はないとしてきました。しかし、中学校では、0より小さい数字を考えるようになります。これを負の数といいます。これまでは、「5-2」のように、大きい数から小さい数を引くことはできても、「2-5」のように、小さい数から大きい数を引くことはできないとしてきました。しかし、こうした負の数を考えることで、小さい数から大きい数を引く計算ができるようになります。負の数は、中学校の数学のさまざまな内容で使われます。
素数
編集
5年生の時に、約数について勉強しました。約数の個数は、数によって異なります。何十個も約数がある数もあれば、約数が2個しかない数もあります。
約数が二個しかない数のことを、素数と言います。(正しくは、約数が1とその数自身しかないもののことを素数と言います。1は素数ではありません。)
方程式
編集
この問題について考えてみましょう。
「280円のケーキを買って、ある
この問題は、小学校の算数で答えは求められますが、中学校では わからない数量を 文字におくという 方程式を使って考えることがあります。
方程式を学習すると、このような問題も解けるようになります。
- ある正方形の
縦 を5cm短くし、横を6cm長くすると面積は120cm2となりました。元の正方形の1辺の長さは何cmですか。
関数 とグラフ
編集
私たちは、普段の生活で「何かを何かに変える」ということを行っています。例えば、スーパに行ってチョコレートを買う、つまり「お金をチョコレートに変える」というようなことです。数学にも同じようなものがあって、ある数字を、別の数字に変える仕組みを持った式があります。これが関数です。
また、その関数に「どの数字を入れた時に、どの数字に変えられるか」を表した図があります。この図のことをグラフと言います。
図形の証明
編集
小学校では、「三角形の3つの角の大きさの和は180°である」ことを学びましたが、これを確かめるために、実際に三角形の角の大きさを分度器で図ったり、三角形の形をした紙切り離して並べかえることで説明しました。けれども、あらゆる大きさの、すべてのかたちの三角形について調べたわけではありません。そこで、図形の証明を学習することで、世界中のどのような三角形でも「3つの角の大きさの和は180°である」ことが説明できるようになります。
確率
編集
もしあなたがサッカーの試合を初めから見たことがあれば、試合前に、2つあるゴールのうちどちらのゴールに攻めるかのコイントスを行なっているシーンを見ることがあるでしょう。この時、同じコインで、かつ同じ方法でコイントスを何度も繰り返したら表が出る回数と裏が出る回数は、同じ回数になるはずです。このことを数学の世界では、分数を使って表すことができます。これが確率です。